服务热线全国服务热线:

13661489766

BR0.10型板式换热器

发布时间:2024-02-23 来源:火狐平台首页

换热器规格型号说明

  C:用于可拆管束与管板制成一体的管箱;N:与管板制成一体的固定管板管箱;

  管壳式换热器分为Ⅰ级和Ⅱ级。Ⅰ级换热器采用较高级冷拔换热管,适用于无相变传热和易产生振动的场合;Ⅱ级换热器采用普通级冷拔换热管,适用于重沸、冷凝传热和无振动的一般场合。换热器的型号按如下方式表示。

  换热器类型标记示例:平盖管箱,公称直径500mm,管程和壳程设计压力均为,公称换热面积54m2,较高级冷拔换热管,外径25mm、管长6m,4管程单壳程的浮头式换热器,标记为:

  封头直径,公称直径700mm,管程设计压力。壳程设计压力,公称换热面积200m2,较高级冷拔换热管,外径25mm、管长9m,4管程单壳程的固定管板式换热器,标记为:

  管堵材料的硬度应不超过管子材料的硬度,堵死的管子总数不允许超出该管程总管数的10%。

  4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

  二、概述与设计的具体方案简介 2.1 概述 在工业生产里用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可大致分为3种形式,即间壁式、非间接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许非间接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 非间接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

  换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

  目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 小组成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

  1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分的发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行相对有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了能够更好的保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>

  ,至少不小于0.8。 低壁温的目的,一般根据相关要求使0.9

  课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

  选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这样的一个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种各样不同型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足多种用户的需要,特殊工况可按用户要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。正常的情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得比较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺技术要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

  甲醇■甲醇换热器II的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器II的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83°C,出口温度-31.68°C ②甲醇:入口温度-37.68°C,出口温度1.00°C ③允许压强降:管侧不大于1.5*105pa壳侧不大于2.9*10’pa. 四,设计内容 ①设计的具体方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

  目录 一、设计题目及原始数据(任务书) (3) 二、设计的基本要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

  一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计的基本要求 1、选择适宜的列管式换热器并做核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术方面的要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

  西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有主体地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要仔细考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构可以进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产所带来的成本低、处理量大、适应高温度高压力等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构相对比较简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

  西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>

  120℃; 内垫片易渗漏 U 型管式 制造、安装便捷,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构很复杂,大多数都用在高温度高压力场合或固定床反应器中

  换热器的设计 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有主体地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要仔细考虑的因素是多方面的,主要有: ①热负荷及流量大小; ②流体的性质; ③温度、压力及允许压降的范围; ④对清洗、维修的要求; ⑤设备结构、材料、尺寸、重量; ⑥价格、使用安全性和寿命; 按照换热面积的形状和结构可以进行分类可分为管型、板型和其它型

  式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产所带来的成本低、处理量大、适应高温度高压力等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构相对比较简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表

  化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

  化工原理课程设计任务书 某生产的全部过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

  各种各样不同型号换热器说明 一各种型号换热器说明及优点 1、BLL双螺旋波节管换热器,使被加热介质在管内成螺旋线流动形式,破坏管壁的介膜层,增加传热面的热传递。它的传热机理与光管及其它形式的传热元件有明显不同。 l换热效果显著提升由于换热器采用了导热最优良的紫铜管制作,换热效果比其它管壳式热交换器相比,换热量提高了3~5倍。在汽-水换热中,传热系数K值在4500~6500W/m2?℃之间,在水-水换热中,传热系数K值在3200~5000 W/m2?℃之间。 不易结垢 由于对紫铜管的特殊加工,在工作过程中,紫铜管的热伸冷缩,使垢片碎裂脱落,预防了结垢现象。 安全性能高 因传热管具有热补偿能力,在传热过程中固定性能优良,可减少应力的作用,因此,管板与管的胀接口处不易泄漏。 安装灵活方便 该设备具备了立式、卧式两种结构型式,能适应任何场合的使用,方便灵活。 这类换热器是按照GB150-1998、GB151-1999〈〈钢制能承受压力的容器〉〉和〈〈管壳式能承受压力的容器〉〉制造、检验和验收的,安全可靠、性能优良,是当今最优秀的换代产品。 2、SFP、LFP型浮动盘管热交换器半即热式换热器也是适应现代需要开发研制的一种新型换热器。它是将加热水贮存在壳体内,热媒(蒸汽或高温水)在管束盘管内,它属于一种有限量注水的换热器,具有较少的注水量(可注水1-3分钟用水),却能迅速补充热量。由于该换热器传热效率高,在换热器热媒进口一定得安装温度调节器,以控制热媒和热水温度,尤其是热水供应系统,温度控制更重要。 自动除垢 换热器中螺旋盘管在热媒温度、压力变化和离心力作用下,以及被加热水流动力的冲动下,使盘管自由上下,左右浮动和高频振动,可使水垢不易粘附在管臂上,可自动脱落,实现自动除垢。但在某些角落仍可能有部分水垢无法脱落,每半年应清垢一次,可利用热水冲击方法,具体如下:1)放净壳体内的水。2)关闭进出水口。3)打开进汽阀和冷凝水阀门排净管内存水,然后关闭冷凝水阀门,大约5-6分钟突然关闭进汽阀门,打开冷水阀门和底部排污阀门,使加热管突然冷却同时关掉脱落水垢,连续5-6次,即可全部排净。 节约能源的效果显著,由于热媒在管内,被加热水在壳体内,因而壳体表面温度低,散热损失少,节约能源,尤其是汽-水换热时,冷凝水温度低,具有较大的节能效益,并减少环境污染。 3、BBR(BR)板式换热器的结构最简单,它是由板片、密封垫片、固定压紧板等零部件组成,其中板片采用进口不锈钢板,密封垫片采用中美合资生产的派克垫。其主要技术指标均达到国内领先水平,且在许多方面与国外同种类型的产品相当。 传热系数高 板式换热器不存在旁通,板片波纹能使流体在较小的流速下产生湍流,所以具有较高的传热系数,一般为3000~7000W/㎡?℃,同时湍流又具有自净效应能预防污垢的形成。 占地面积小 板式换热器结构紧密相连,在传热量相当的条件下,所占空间仅为管壳式换热器的1/2~1/3。 阻力损失小 在相同的传热系数条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 热损失小

  冷却器 产品使用说明书 中国广东 郁南县中兴换热器有限公司 一﹑概述 郁南县中兴换热器有限公司是广东中兴液力传动有限公司下属生产热交换器的专业厂家,基本的产品有GLC﹑GLL﹑LQ型系列列管式冷却器,BR型系列板式冷却器, FL型﹑KL型、YOFL型(液力偶合器专用)系列空气(风)冷却器及各种热交换器,换热面积从~800m2。产品普遍的使用在电力﹑冶金﹑矿山﹑机械﹑船舶﹑化工﹑空调、食品和液压润滑行业,将工作介质换热(冷却)到规定的温度。 列管式冷却器由进出端盖﹑壳体﹑管束﹑后端盖、密封件及紧固件等组成,冷却介质(水)一般从换热管内通过,被冷却介质(油)从换热管外壳体内通过,冷热介质通过换热管传热,使被冷却介质温度下降。 列管式冷却器一般都会采用优质铜管﹑不锈钢管﹑钛管等作为换热管,管程可采用单回程、二回程或多回程,管程数增加使冷却介质流通时间加长,提高换热效果,换热管束上一般都会采用弓形折流板,使被冷却介质(油)在壳程内的流道为S形,达到被冷却介质(油)与换热管充分接触目的。 空气冷却器由进出端盖、本体、后端盖、风机、密封件、紧固件等组成,换热管采用单金属或双金属高效复合管。空气冷却器采用空气(风)作为冷却介质,具有工作稳定、无介质混合、运行的成本低、节能环保、维护方便的优点。 二﹑型号及参数

  三﹑使用说明 1﹑首先检查冷却器型号与规定要求相不相符,资料附件是否齐全(见装箱单),检查冷却器外观是否破损,紧固螺栓是否松动,冷却器出厂时已进行压力试验和清洗,一般不允许拆动紧固螺栓,确需拆卸清洗的,清洗完后一定要进行压力试验,无泄漏、无异常方可使用。 2﹑冷却器安装前须确认进入冷却器的介质压力不大于冷却器铭牌标示设计压力。冷却器一般安装在系统回路或系统中压力相比来说较低处,必要时设置压力保护设施。列管式冷却器介质为油水时,油侧压力一般应大于水侧压力。试车前应在系统中设计傍路防止过高压力冲坏冷却器。连接冷却器的管道和系统须清理洗涤干净,进入冷却器的介质须进行过滤,严防杂质堵塞和污染冷却器,以免影响冷却器效果。 空气冷却器安装应考虑进出风顺畅,在1米内无阻挡物。安装在室外时,应设置遮盖,防曝晒、防雨淋,以提高换热效率和常规使用的寿命。 3﹑安装时须检查冷却器介质进出口无堵塞,将冷却器与介质管道连接紧密无泄漏。 4﹑冷却器工作时,先打开冷却器出口阀门,缓慢打开冷介质(水)进入阀,再缓慢打开热介质(油)进入阀,调整介质进入流量,以达到最佳效果。注意在打开冷却水进口阀门时不要过快,否则使换热管表面产生导热性很差的“过冷层”影响换热效果。 5﹑冷却器接通介质后,应检查各部位有无泄漏,并注意排尽冷却器中的气体,以提高换热效率和减少腐蚀。 6﹑在冬季冷却器停用时应放尽介质,防止介质冻结澎胀损坏冷却器。长期停用,应将冷却器拆下进行清理洗涤、防锈等维护保养。

  设计任务和设计条件 某生产的全部过程的流程如图所示。反应器的混合气体经与进料物流℃之后,进入60换热后,用循环冷却水将其从110℃进一步冷却至为量的流 知混合气体组吸塔收其中的可溶性分。已吸收237301,压力为6.9,循环冷却水的压力为0.4,循环MPaMPa hkg水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

  物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度3?mkg/?901定压 比热容 =3.297kj/kg℃c1p热导率 =0.0279w/m ?1粘度5??Pas51?.?1011 下的物性数据:34℃循环水在3/m=994.3 密度㎏?1℃ =4.174kj/kg定压比热容c1p =0.624w/m℃热导率 ?1粘度3??Pas10742?0.?1确定设计的具体方案 1.选择换热器的类型 两流体温的变动情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢上涨的速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。

  浮头式换热器介绍 浮头式换热器的特点是有一端管板不与外壳连为一体,可以沿轴向自由浮动。这种结构不但完全消除了热应力的影响,且由于固2 定端的管板以法兰与壳体连接,整个管束可以从壳体中抽出,因此便于清洗和检修。故浮头式换热器应用较为普遍,但它的结构很复杂,造价较高。 确定物性数据

  ASPEN PLUS换热器设计说明 ASPEN PLUS与换热器设计 程序的界面 本章讲述的是怎么样去使用ASPEN PLUS 自带的换热器设计程序界面(HXINT)在AS PEN PLUS运行与换热器设计程序包之间传输加热/冷却曲线的数据。 本章的主题包括: §生成物性数据 §开始运行HTXINT §选择加热/冷却曲线的结果 §生成界面文件 §在换热器设计程序包中使用界面程序 关于换热器设计程序界面 用户都能够使用HTXINT程序从一个ASPEN PLUS 运行程序中选择加热/冷却曲线数据,并将这一些数据传输到某个能被下列换热器设计程序包读取的文件中: §B-JAC中的HETRAN §HTFS的TASC, ACOL, 以及APLE §HTFS的M-系列程序, 包括M-TASC, M-ACOL, 以及M-APLE §HTRI的ST, CST, ACE, PHE以及RKH 用户还可以扩展由加热/冷却曲线所得到的默认数据,使其包括换热器设计程序包所需要的所有物性数据。 完成一次ASPEN PLUS 运行之后,在开始运行设计程序之前要先运行HTXINT。HTXINT将通过一系列提示给用户以指引,为换热器设计程序选择加热/冷却曲线。 HTXINT是一个用于调用ASPEN PLUS 摘要文件工具的应用程序。

  在模拟中生成物性数据 HTXINT所使用的物性数据来自加热/冷却曲线,许多ASPEN PLUS单元操作模型都可以生成这种曲线。在使用HTXINT时,用户必须先使用ASPEN PLUS 生成所需的加热/冷却曲线,对于每个想要的单元模块都要生成加热/冷却曲线(一条或多条)。关于指定加热/冷却曲线章“要求加热/冷却曲线计算”一节。在模块的Hcurve上就可以: 1.在“Property Sets”栏下选择“HXDESIGN” 2.选择所需采样点的数目。见本章“指定加热/冷却曲线.指定压力降的数值 下面各节将详细讲述以上各步骤。 指定物性集 为了生成换热器设计程序界面所需要的物性数据,在Hcurve下选择内建的HX DESIGN物性集。 指定加热/冷却曲线的取样点数目 一般地,ASPEN PLUS所默认的10个中间点的设置是可接受的,用户也可以增减这一数目。假如取样点的数量超越了换热器设计程序所能接受的最大数目,HTXINT会在加热/冷却曲线上选择,将曲线终点以及曲线上的任何露点或泡点包含在内。由于ASPEN PLUS会额外增加露点或泡点,最终的取样点数可能会比用户想要的要多。 指定压降 HETRAN是唯一接受非等压物性曲线的换热器设计程序包。对其他的换热器设计程序包,不可以将带有压降的加热/冷却曲线拷贝到HTXINT界面就算完事。HTRI程序包可以在每侧接受最多3条不同压力下的加热/冷却曲线。为了使结果尽可能的精确,应该定义下列压力下的3条加热/冷却曲线: §入口压力 §出口压力 §发生相变时的压力 启动HTXINT 要想交互式的运行HTXINT界面,请恰当的使用命令

  变压器油水冷却器相关这类的产品操作维护说明 1 综述 变压器油是由变压器热量损失的热量来加热的。变压器油立即进入冷却器外部的管束。阻碍器是用来指引变压器油在交叉管中的流向的。管子的冷却面被分为两部分甚至更多。多数管路使用双回路水。 单管冷却器的特征 非常必要使用单管冷却器使油压始终超过运转过程中的水压。这样就防止了了水穿透油发生渗漏。 双管冷却器的特征 不像变压器油水冷却器单管设计那样,管路为双管和双向管板。这种特殊的安全设计能够在运转过程中避免冷却水压不再受油压的限制(通常小于2BAR)。双管路冷凝器的标准设计适合水压在10BAR。万一发生水或油的泄漏,他们将立即进入位于双管之间的小细管中,进入两管板中间的空间。因此,双管系统的设计就避免了油水或水油的混合。这种设计是对变压器和冷却水的保护。发现泄漏后,冷却器的泄漏通路将和一个小的收集盒连接,以来控制泄漏,―这就是泄漏控制器。在泄漏控制器内部,有一个磁控浮动转换装置与收集传导器连接,即便发生几个立方厘米的泄漏也会及时报警。 2型号 变压器油水冷却器的型号标注为字母WK 例如: W K D H 250 DIN Z D---代表冷却器制造方式 D-双管路设计 E-单管路设计 H---装配方向 H-挂式 L-卧式 S-立式 250-功率水平:40,63, 100,160, 250, 315,400, 500, 630…) DIN---型号系列比如DIN或EX, NR… Z---选择,与标准设计不同的设计 3,安装 变压器油水冷却器的输出是由密封油-油面的入出口有珐琅。油仓充满含水量小于10%的氮气且压力为0.45BAR以便防止冷却器受侵蚀及受污。在装卸时,封闭板必须拆除。 水冷却器一定得安装在干燥的房间内,且该房间不会受震动或相关干扰。 !!!注意:在启动热交换器前必须要经过检查确认。 3,1安装地点

  列管式换热器课程设计说明书 1.工原理课程设计任务书 一、设计题目:设计一煤油冷却器 二、设计条件: 1、解决能力 160000吨/年 2、设备型式列管式换热器 3、操作条件 允许压力降:0.02MPa 热损失:按传热量的10%计算 每年按330天计,每天24小时连续运行 三、设计容 4、前言 5、确定设计的具体方案(设备选型、冷却剂选择、换热器材质及载体流入空间的选择) 6、确定物性参数 7、工艺设计 8、换热器计算 (1)核算总传热系数(传热面积) (2)换热器流体的流动阻力校核(计算压降) 9、机械结构的选用 (1)管板选用、管子在管板上的固定、管板与壳体连接结构 (2)封头类型选用 (3)温差补偿装置的选用 (4)管法兰选用 (5)管、壳程接管 10、换热器主要结构尺寸和计算结果表 11、结束语(包括对设计的自我评书及有关问题的分析讨论) 12、换热器的结构和尺寸(4#图纸) 13、参考资料目录

  2.流程图 3.工艺流程图水(30℃) 煤油(140℃)浮头式换热器 水(50℃) 可循环利用 产品: 煤油(80℃)

  4.设计计算 4.1设计任务与条件 某生产的全部过程中,用自来水将煤油从140℃冷却至80℃。已知换热器的解决能力为160000吨/年,冷却介质自来水的入口温度为30℃,出口温度为50℃,允许压力降为0.02MPa ,热损失按传热量的10%计算,每年按330天计,每天24小时连续运行,试设计一台列管式换热器,完成该生产任务。 4.2设计计算 4.2.1确定设计的具体方案 (1) 选择换热器的类型 两流体温度变动情况: 热流体进口温度1T 140℃,出口温度2T 80℃, 冷流体进口温度1t 30℃,出口温度2t 50℃。 进口温度差1T -1t =110℃>100℃,因此初步确定选用浮头式换热器。 (2) 管程安排 由于自来水较易结垢,若其流速太低,将会加快污垢上涨的速度,使 换热器热流量下降,而且管程较壳程易于清洗,再加上热流体走壳程可以使热流体更易于散热,减小能耗,所以从总体考虑,应使自来水走管程,混合气体走壳程。 4.2.2确定物性参数 定性温度:对于一般气体和水等低粘度流体,其定性温度可取流体进、出口温度的平均值。故壳程煤油的定性温度为 110280140=+= T ℃ 管程流体的定性温度为 402 5030=+=t ℃ 查资料得,煤油在110℃下的有关物性数据如下: 水在40℃下的有关物性数据如下:

  本站资源均为网友上传分享,本站仅负责收集和整理,有任意的毛病请在对应网页下方投诉通道反馈